112 research outputs found

    Aerosol dynamics and dispersion of radioactive particles

    Get PDF
    In the event of a failure of a nuclear power plant with release of radioactive material into the atmosphere, dispersion modelling is used to understand how the released radioactivity is spread. For the dispersion of particles, Lagrangian particle dispersion models (LPDMs) are commonly used, in which model particles, representing the released material, are transported through the atmosphere. These model particles are usually inert and undergo only first-order processes such as dry deposition and simplified wet deposition along the path through the atmosphere. Aerosol dynamic processes including coagulation, condensational growth, chemical interactions, formation of new particles and interaction with new aerosol sources are usually neglected in such models. The objective of this study is to analyse the impact of these advanced aerosol dynamic processes if they were to be included in LPDM simulations for use in radioactive preparedness. In this investigation, a fictitious failure of a nuclear power plant is studied for three geographically and atmospherically different sites. The incident was simulated with a Lagrangian single-trajectory box model with a new simulation for each hour throughout a year to capture seasonal variability of meteorology and variation in the ambient aerosol. (a) We conclude that modelling of wet deposition by incorporating an advanced cloud parameterization is advisable, since it significantly influence simulated levels of airborne and deposited activity including radioactive hotspots, and (b) we show that inclusion of detailed ambient-aerosol dynamics can play a large role in the model result in simulations that adopt a more detailed representation of aerosol–cloud interactions. The results highlight a potential necessity for implementation of more detailed representation of general aerosol dynamic processes into LPDMs in order to cover the full range of possible environmental characteristics that can apply during a release of radionuclides into the atmosphere

    A new aerosol wet removal scheme for the Lagrangian particle model FLEXPART v10

    Get PDF
    A new, more physically based wet removal scheme for aerosols has been implemented in the Lagrangian particle dispersion model FLEXPART. It uses three-dimensional cloud water fields from the European Centre for MediumRange Weather Forecasts (ECMWF) to determine cloud extent and distinguishes between in-cloud and below-cloud scavenging. The new in-cloud nucleation scavenging depends on cloud water phase (liquid, ice or mixed-phase), based on the aerosol's prescribed efficiency to serve as ice crystal nuclei and liquid water nuclei, respectively. The impaction scavenging scheme now parameterizes below-cloud removal as a function of aerosol particle size and precipitation type (snow or rain) and intensity. Sensitivity tests with the new scavenging scheme and comparisons with observational data were conducted for three distinct types of primary aerosols, which pose different challenges for modeling wet scavenging due to their differences in solubility, volatility and size distribution: (1) Cs-137 released during the Fukushima nuclear accident attached mainly to highly soluble sulphate aerosol particles, (2) black carbon (BC) aerosol particles, and (3) mineral dust. Calculated e-folding lifetimes of accumulation mode aerosols for these three aerosol types were 11.7, 16.0, and 31.6 days respectively, when well mixed in the atmosphere. These are longer lifetimes than those obtained by the previous removal schem, and, for mineral dust in particular, primarily result from very slow in-cloud removal, which globally is the primary removal mechanism for these accumulation mode particles. Calculated e-folding lifetimes in FLEXPART also have a strong size dependence, with the longest lifetimes found for the accumulation-mode aerosols. For example, for dust particles emitted at the surface the lifetimes were 13.8 days for particles with 1 aem diameter and a few hours for 10 aem particles. A strong size dependence in below-cloud scavenging, combined with increased dry removal, is the primary reason for the shorter lifetimes of the larger particles. The most frequent removal is in-cloud scavenging (85% of all scavenging events) but it occurs primarily in the free troposphere, while below-cloud removal is more frequent below 1000m (52% of all events) and can be important for the initial fate of species emitted at the surface, such as those examined here. For assumed realistic in-cloud removal efficiencies, both BC and sulphate have a slight overestimation of observed atmospheric concentrations (a factor of 1.6 and 1.2 respectively). However, this overestimation is largest close to the sources and thus appears more related to overestimated emissions rather than underestimated removal. The new aerosol wet removal scheme of FLEXPART incorporates more realistic information about clouds and aerosol properties and it compares better with both observed lifetimes and concentration than the old scheme.Peer reviewe

    Biomass burning and urban emission impacts in the Andes Cordillera region based on in situ measurements from the Chacaltaya observatory, Bolivia (5240 m a.s.l.)

    Get PDF
    This study documents and analyses a 4-year continuous record of aerosol optical properties measured at the Global Atmosphere Watch (GAW) station of Chacaltaya (CHC; 5240 m a.s.l.), in Bolivia. Records of particle light scattering and particle light absorption coefficients are used to investigate how the high Andean Cordillera is affected by both long-range transport and by the fast-growing agglomeration of La Paz-El Alto, located approximately 20 km away and 1.5 km below the sampling site. The extended multiyear record allows us to study the properties of aerosol particles for different air mass types, during wet and dry seasons, also covering periods when the site was affected by biomass burning in the Bolivian lowlands and the Amazon Basin. The absorption, scattering, and extinction coefficients (median annual values of 0.74, 12.14, and 12.96 Mm(-1) respectively) show a clear seasonal variation with low values during the wet season (0.57, 7.94, and 8.68 Mm(-1) respectively) and higher values during the dry season (0.80, 11.23, and 14.51 Mm(-1) respectively). The record is driven by variability at both seasonal and diurnal scales. At a diurnal scale, all records of intensive and extensive aerosol properties show a pronounced variation (daytime maximum, night-time minimum), as a result of the dynamic and convective effects. The particle light absorption, scattering, and extinction coefficients are on average 1.94, 1.49, and 1.55 times higher respectively in the turbulent thermally driven conditions than the more stable conditions, due to more efficient transport from the boundary layer. Retrieved intensive optical properties are significantly different from one season to the other, reflecting the changing aerosol emission sources of aerosol at a larger scale. Using the wavelength dependence of aerosol particle optical properties, we discriminated between contributions from natural (mainly mineral dust) and anthropogenic (mainly biomass burning and urban transport or industries) emissions according to seasons and local circulation. The main sources influencing measurements at CHC are from the urban area of La Paz-El Alto in the Altiplano and from regional biomass burning in the Amazon Basin. Results show a 28 % to 80 % increase in the extinction coefficients during the biomass burning season with respect to the dry season, which is observed in both tropospheric dynamic conditions. From this analysis, long-term observations at CHC provide the first direct evidence of the impact of biomass burning emissions of the Amazon Basin and urban emissions from the La Paz area on atmospheric optical properties at a remote site all the way to the free troposphere.Peer reviewe

    Biomass burning and urban emission impacts in the Andes Cordillera region based on in situ measurements from the Chacaltaya observatory, Bolivia (5240a.s.l.)

    Get PDF
    This study documents and analyses a 4-year continuous record of aerosol optical properties measured at the Global Atmosphere Watch (GAW) station of Chacaltaya (CHC; 5240a.s.l.), in Bolivia. Records of particle light scattering and particle light absorption coefficients are used to investigate how the high Andean Cordillera is affected by both long-range transport and by the fast-growing agglomeration of La Paz-El Alto, located approximately 20km away and 1.5km below the sampling site. The extended multi-year record allows us to study the properties of aerosol particles for different air mass types, during wet and dry seasons, also covering periods when the site was affected by biomass burning in the Bolivian lowlands and the Amazon Basin. The absorption, scattering, and extinction coefficients (median annual values of 0.74, 12.14, and 12.96Mm-1 respectively) show a clear seasonal variation with low values during the wet season (0.57, 7.94, and 8.68Mm-1 respectively) and higher values during the dry season (0.80, 11.23, and 14.51Mm-1 respectively). The record is driven by variability at both seasonal and diurnal scales. At a diurnal scale, all records of intensive and extensive aerosol properties show a pronounced variation (daytime maximum, night-time minimum), as a result of the dynamic and convective effects. The particle light absorption, scattering, and extinction coefficients are on average 1.94, 1.49, and 1.55 times higher respectively in the turbulent thermally driven conditions than the more stable conditions, due to more efficient transport from the boundary layer. Retrieved intensive optical properties are significantly different from one season to the other, reflecting the changing aerosol emission sources of aerosol at a larger scale. Using the wavelength dependence of aerosol particle optical properties, we discriminated between contributions from natural (mainly mineral dust) and anthropogenic (mainly biomass burning and urban transport or industries) emissions according to seasons and local circulation. The main sources influencing measurements at CHC are from the urban area of La Paz-El Alto in the Altiplano and from regional biomass burning in the Amazon Basin. Results show a 28% to 80% increase in the extinction coefficients during the biomass burning season with respect to the dry season, which is observed in both tropospheric dynamic conditions. From this analysis, long-term observations at CHC provide the first direct evidence of the impact of biomass burning emissions of the Amazon Basin and urban emissions from the La Paz area on atmospheric optical properties at a remote site all the way to the free troposphere. © Author(s) 2019

    Simultaneous measurements of aerosol size distributions at three sites in the European high Arctic

    Get PDF
    19 pages, 9 figures, 1 tableAerosols are an integral part of the Arctic climate system due to their direct interaction with radiation and indirect interaction through cloud formation. Understanding aerosol size distributions and their dynamics is crucial for the ability to predict these climate relevant effects. When of favourable size and composition, both long-rangetransported-and locally formed particles-may serve as cloud condensation nuclei (CCN). Small changes of composition or size may have a large impact on the low CCN concentrations currently characteristic of the Arctic environment. We present a cluster analysis of particle size distributions (PSDs; size range 8-500 nm) simultaneously collected from three high Arctic sites during a 3-year period (2013-2015). Two sites are located in the Svalbard archipelago: Zeppelin research station (ZEP; 474 m above ground) and the nearby Gruvebadet Observatory (GRU; about 2 km distance from Zeppelin, 67 m above ground). The third site (Villum Research Station at Station Nord, VRS; 30 m above ground) is 600 km west-northwest of Zeppelin, at the tip of northeastern Greenland. The GRU site is included in an inter-site comparison for the first time. K-means cluster analysis provided eight specific aerosol categories, further combined into broad PSD classes with similar characteristics, namely pristine low concentrations (12 %-14 % occurrence), new particle formation (16 %-32 %), Aitken (21 %-35 %) and accumulation (20 %-50 %). Confined for longer time periods by consolidated pack sea ice regions, the Greenland site GRU shows PSDs with lower ultrafine-mode aerosol concentrations during summer but higher accumulation-mode aerosol concentrations during winter, relative to the Svalbard sites. By association with chemical composition and cloud condensation nuclei properties, further conclusions can be derived. Three distinct types of accumulation-mode aerosol are observed during winter months. These are associated with sea spray (largest detectable sizes, > 400 nm), Arctic haze (main mode at 150 nm) and aged accumulation-mode (main mode at 220 nm) aerosols. In contrast, locally produced particles, most likely of marine biogenic origin, exhibit size distributions dominated by the nucleation and Aitken mode during summer months. The obtained data and analysis point towards future studies, including apportioning the relative contribution of primary and secondary aerosol formation pro cesses and elucidating anthropogenic aerosol dynamics and transport and removal processes across the Greenland Sea. In order to address important research questions in the Arctic on scales beyond a singular station or measurement events, it is imperative to continue strengthening international scientific cooperationThis research has been supported by the Spanish Ministry of Economy through project BIO-NUC (CGL2013-49020-R), PI-ICE (CTM2017-89117-R) and the Ramon y Cajal fellowship (RYC-2012-11922). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654109, the Danish Council for Independent Research (project NUMEN, DFF-FTP-4005-00485B) and previously from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 262254. The work at Villum Research Station, Station Nord, was financially supported by the Danish Environmental Protection Agency via the MIKA/DANCEA funds for Environmental Support to the Arctic Region. The Villum Foundation funded the construction of Villum Research Station, Station Nord. CCN measurements are supported by a KOPRI program (PN19081), funded by a National Research Foundation of Korea grant (NRF-2016M1A5A1901769). The authors acknowledge financial support (to David C. S. Beddows) from the Natural Environment Research Council's funding of the National Centre for Atmospheric Science (NCAS) (grant number R8/H12/83/011)Peer Reviewe
    corecore